谷歌浏览器插件
订阅小程序
在清言上使用

Genes with 5′ Terminal Oligopyrimidine Tracts Preferentially Escape Global Suppression of Translation by the SARS-CoV-2 Nsp1 Protein

RNA(2021)

引用 16|浏览20
暂无评分
摘要
Viruses rely on the host translation machinery to synthesize their own proteins. Consequently, they have evolved varied mechanisms to co-opt host translation for their survival. SARS-CoV-2 relies on a nonstructural protein, Nsp1, for shutting down host translation. However, it is currently unknown how viral proteins and host factors critical for viral replication can escape a global shutdown of host translation. Here, using a novel FACS-based assay called MeTAFlow, we report a dose-dependent reduction in both nascent protein synthesis and mRNA abundance in cells expressing Nsp1. We perform RNA-seq and matched ribosome profiling experiments to identify gene-specific changes both at the mRNA expression and translation levels. We discover that a functionally coherent subset of human genes is preferentially translated in the context of Nsp1 expression. These genes include the translation machinery components, RNA binding proteins, and others important for viral pathogenicity. Importantly, we uncovered a remarkable enrichment of 5' terminal oligo-pyrimidine (TOP) tracts among preferentially translated genes. Using reporter assays, we validated that 5' UTRs from TOP transcripts can drive preferential expression in the presence of Nsp1. Finally, we found that LARP1, a key effector protein in the mTOR pathway, may contribute to preferential translation of TOP transcripts in response to Nsp1 expression. Collectively, our study suggests fine-tuning of host gene expression and translation by Nsp1 despite its global repressive effect on host protein synthesis.
更多
查看译文
关键词
SARS-CoV-2,Nsp1,MeTAFlow,translation,ribosome profiling,RNA-seq,5 ' TOP,Ribo-seq,gene expression
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要