Time-stretch spectroscopy for fast infrared absorption spectra of acetylene and hydroxyl radicals during combustion.

OPTICS EXPRESS(2020)

引用 7|浏览12
暂无评分
摘要
We have developed a diagnostic that uses time-domain spectroscopy to measure transient infrared absorption spectra in gases. Using a time-stretch Fourier transform approach, we can determine pressure, temperature, and gas concentrations with sub-microsecond time resolution for over two milliseconds. We demonstrate high-resolution (0.015 nm), time-resolved spectral measurements in an acetylene-oxygen gas mixture undergoing combustion. Within a 5 mu s period during the reaction, the acetylene line intensities decrease substantially, and new spectra appear that are consistent with the hydroxyl (OH) radical, a common by-product in the combustion, deflagration, and detonation of fuels and explosives. Post-reaction pressures and temperatures were estimated from the OH spectra. The technique measures spectra from 1520 to 1620 nm using fiber optics, photodetectors, and digitizers. No cameras or spectrometers are required.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要