谷歌浏览器插件
订阅小程序
在清言上使用

Structural Basis of Ion Transport and Inhibition in Ferroportin

Nature communications(2020)

引用 52|浏览43
暂无评分
摘要
Ferroportin is an iron exporter essential for releasing cellular iron into circulation. Ferroportin is inhibited by a peptide hormone, hepcidin. In humans, mutations in ferroportin lead to ferroportin diseases that are often associated with accumulation of iron in macrophages and symptoms of iron deficiency anemia. Here we present the structures of the ferroportin from the primate Philippine tarsier (TsFpn) in the presence and absence of hepcidin solved by cryo-electron microscopy. TsFpn is composed of two domains resembling a clamshell and the structure defines two metal ion binding sites, one in each domain. Both structures are in an outward-facing conformation, and hepcidin binds between the two domains and reaches one of the ion binding sites. Functional studies show that TsFpn is an electroneutral H+/Fe2+ antiporter so that transport of each Fe2+ is coupled to transport of two H+ in the opposite direction. Perturbing either of the ion binding sites compromises the coupled transport of H+ and Fe2+. These results establish the structural basis of metal ion binding, transport and inhibition in ferroportin and provide a blueprint for targeting ferroportin in pharmacological intervention of ferroportin diseases. Ferroportin is an iron exporter essential for releasing cellular iron into circulation and is inhibited by a peptide hormone, hepcidin. Here authors present cryo-EM structures of the ferroportin from the primate Philippine tarsier (TsFpn) with and without hepcidin and show that TsFpn is an electroneutral H+ /Fe2+ antiporter.
更多
查看译文
关键词
Cryoelectron microscopy,Proteins,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要