Effect of undercoordinated Ag(111) defect sites on the adsorption of ethanol

JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A(2020)

引用 2|浏览6
暂无评分
摘要
In recent years, the use of silver-based materials for selective and highly active ethanol reactivity in single atom catalysis and the ethanol oxidation reaction in direct fuel cells highlights the importance of silver (Ag) in an ethanol economy. Understanding the interaction of ethanol with Ag(111) and the natural defects found on extended Ag(111) is critical to the overall understanding of more complex catalytic processes including ethanol activation over Ag-based catalysts. The research herein aims to characterize the interaction of ethanol molecules on undercoordinated defect sites of Ag(111) to mimic active sites found on Ag nanoparticle catalysts. The interaction between ethanol and Ag(111) was studied using temperature programed desorption (TPD), x-ray photoelectron spectroscopy, and density functional theory (DFT). Molecular ethanol adsorption and desorption from Ag(111) and the distinction between undercoordinated Ag(111) adsorption sites were determined using TPD in correlation with DFT. Complete analysis of TPD data for ethanol adsorbed to terrace sites was used to calculate a kinetic prefactor (3.4x10(15)) and desorption energy (0.54eV). A better understanding of defect-dependent behavior for ethanol on silver can lead to a greater insight into high surface area nanoparticle catalysts used in industries, catalytic converters, and photo-, electro-, and heterogeneous catalysis. The results suggest that ethanol preferentially adsorbs to undercoordinated sites on Ag(111), resulting in higher binding energies for these molecules (Redhead first order approximation for desorption energies is terrace, 0.54eV; step edge, 0.57eV; and kink sites, 0.61eV). Furthermore, alteration of the silver surface can lead to a redistribution of these sites.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要