Selective targeting of HER2-overexpressing solid tumors with a next-generation CAR-T cell therapy.

Journal of Clinical Oncology(2020)

引用 1|浏览11
暂无评分
摘要
3041 Background: Conventional chimeric antigen receptor T cell (CAR-T) therapies have achieved limited clinical success in the treatment of solid tumors, in part due to the challenges of identifying tumor antigen(s) that are uniquely expressed on tumor cells. The dearth of such targets requires that current CAR-T therapies be re-engineered to preferentially target tumor cells thereby mitigating potential on-target off-tumor toxicity to normal cells. Herein we describe a novel cell therapy platform comprising Antigen Receptor Complex T (ARC-T) cells that are readily activated, silenced, and reprogrammed in vivo by administration of a novel tumor-targeting soluble protein antigen-receptor X-linker (sparX). The formation of the ARC-T, sparX, and tumor complex is required for the ARC-T to kill the tumor. Because ARC-T activity is entirely dependent on the dose of sparX administered, therapeutic doses of sparX may be defined that preferentially target cells over-expressing a target antigen and thus limit coincident kill of normal cells expressing lower levels of target antigen. Methods: We have created a library of sparX that bind different cell surface antigens, including HER2. The HER2 sparX was tested as both monovalent and bivalent constructs in vitro by assessing ARC-T cell activation, cytokine release and target cell cytotoxicity. In vivo efficacy models utilized NSG mice and incorporated tumor volume measurements and histopathologic assessments to evaluate tumor clearance. Results: In vitro studies demonstrate that co-culture of ARC-T cells, sparX-HER2 and HER2-expressing target cells drives T cell activation, expansion, cytokine secretion and cytotoxicity of target cells in a dose-dependent manner. Furthermore, by affinity tuning the HER2 binding domain and bivalent formatting of sparX-HER2, we achieved selective killing of HER2-overexpressing breast cancer cells with minimal effect on cells expressing HER2 levels representative of normal tissues. In vivo proof-of-principal studies with ARC-T/sparX-HER2 similarly demonstrate complete eradication of HER2-overexpressing solid tumor cells. Conclusions: These results demonstrate that a single intravenous dose of ARC-T cells can traffic to a solid tumor site and induce tumor eradication upon systemic administration and co-localization of tumor-targeting sparX in a mouse model. Bivalent formatting of sparX-HER2 further enabled ARC-T sensitivity to target antigen density to avoid the on-target off-tumor toxicity that has hindered conventional monovalent CAR-T treatments.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要