Historic variation of trace elements in pinnipeds with spatially segregated trophic habits reveals differences in exposure to pollution.

SCIENCE OF THE TOTAL ENVIRONMENT(2021)

引用 10|浏览3
暂无评分
摘要
Marine mammals and the ecological functions they provide to coastal and pelagic ecosystems are increasingly threatened by the intensification of anthropogenic impacts. The Uruguayan coastline throughout the 20th century, like other coastal environments worldwide, has been the sink of a variety of trace metals derived from the rapid urbanization and industrialization of related land areas. This coastline is inhabited by two species of pinnipeds trophically and spatially segregated. Otaria byronia feeds in coastal environments while Arctocephalus australis preysmainly offshore. The present study aimed to analyze historic changes in concentrations of trace elements in teeth of both species from 1941 to the present day. We analyzed the dentin of 94 canine teeth using stable isotope analysis (delta C-13) and ICP-MS to determine their feeding areas and the concentration of 10 trace elements (Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) respectively. The concentration of Cr was significantly higher during '70-'80s, in both species coinciding with tannery industry development. Both species of pinnipeds have been differentially exposed to trace elements depending on their feeding area. A pelagic diet, possibly based on squid, increased the concentration of Cd in A. australis, while O. byronia has been more exposed to anthropogenic Pb and Cu associated to a costal and more benthic diet. Our results highlight dentin as a reliable matrix for historic studies on the exposure to trace elements. In light of our results, the O. byronia's declining population could be the result of the synergistic effects of trace elements together with other ecological pressures faced in their environment. (C) 2020 Elsevier B.V. All rights reserved.
更多
查看译文
关键词
Stable isotopes,Marine mammals,ICP-MS,Trophic ecology,Ecotoxicology
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要