Deficiency of Inositol Monophosphatase Activity Decreases Phosphoinositide Lipids and Enhances TRPV1 Function In Vivo

JOURNAL OF NEUROSCIENCE(2021)

引用 6|浏览17
暂无评分
摘要
Membrane remodeling by inflammatory mediators influences the function of sensory ion channels. The capsaicin- and heat-activated transient receptor potential vanilloid 1 (TRPV1) channel contributes to neurogenic inflammation and pain hypersensitivity, in part because of its potentiation downstream of phospholipase C-coupled receptors that regulate phosphoinositide lipid content. Here, we determined the effect of phosphoinositide lipids on TRPV1 function by combining genetic dissection, diet supplementation, and behavioral, biochemical, and functional analyses in Caenorhabditis elegans. As capsaicin elicits heat and pain sensations in mammals, transgenic TRPV1 worms exhibit an aversive response to capsaicin. TRPV1 worms with low levels of phosphoinositide lipids display an enhanced response to capsaicin, whereas phosphoinositide lipid supplementation reduces TRPV1-mediated responses. A worm carrying a TRPV1 construct lacking the distal C-terminal domain features an enhanced response to capsaicin, independent of the phosphoinositide lipid content. Our results demonstrate that TRPV1 activity is enhanced when the phosphoinositide lipid content is reduced, and the C-terminal domain is key to determining agonist response in vivo.
更多
查看译文
关键词
Caenorhabditis elegans, in vivo calcium imaging, inositol monophosphatase, lipid regulation, phosphoinositides, TRPV1
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要