Experimental evidence of exciton capture by mid-gap defects in CVD grown monolayer MoSe 2

npj 2D Materials and Applications(2017)

引用 55|浏览3
暂无评分
摘要
In two dimensional (2D) transition metal dichalcogenides, defect-related processes can significantly affect carrier dynamics and transport properties. Using femtosecond degenerate pump-probe spectroscopy, exciton capture, and release by mid-gap defects have been observed in chemical vapor deposition (CVD) grown monolayer MoSe 2 . The observed defect state filling shows a clear saturation at high exciton densities, from which the defect density is estimated to be around 0.5 × 10 12 /cm 2 . The exciton capture time extracted from experimental data is around ~ 1 ps, while the average fast and slow release times are 52 and 700 ps, respectively. The process of defect trapping excitons is found to exist uniquely in CVD grown samples, regardless of substrate and sample thickness. X-ray photoelectron spectroscopy measurements on CVD and exfoliated samples suggest that the oxygen-associated impurities could be responsible for the exciton trapping. Our results bring new insights to understand the role of defects in capturing and releasing excitons in 2D materials, and demonstrate an approach to estimate the defect density nondestructively, both of which will facilitate the design and application of optoelectronics devices based on CVD grown 2D transition metal dichalcogenides.
更多
查看译文
关键词
Ultrafast lasers,Ultrafast photonics,Materials Science,general,Nanotechnology,Surfaces and Interfaces,Thin Films
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要