Role of the temporal window in dolphin auditory brainstem response onset.

JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA(2020)

引用 4|浏览17
暂无评分
摘要
Auditory brainstem responses (ABRs) to linear-enveloped, broadband noisebursts were measured in six bottlenose dolphins to examine relationships between sound onset envelope properties and the ABR peak amplitude. Two stimulus manipulations were utilized: (1) stimulus onset envelope pressure rate-of-change was held constant while plateau pressure and risetime were varied and (2) plateau duration was varied while plateau pressure and risetime were held constant. When the stimulus onset envelope pressure rate-of-change was held constant, ABR amplitudes increased with risetime and were fit well with an exponential growth model. The model best-fit time constants for ABR peaks P1 and N5 were 55 and 64 μs, respectively, meaning ABRs reached 99% of their maximal amplitudes for risetimes of 275-320 μs. When plateau pressure and risetime were constant, ABR amplitudes increased linearly with stimulus sound exposure level up to durations of ∼250 μs. The results highlight the relationship between ABR amplitude and the integral of some quantity related to the stimulus pressure envelope over the first ∼250 μs following stimulus onset-a time interval consistent with prior estimates of the dolphin auditory temporal window, also known as the "critical interval" in hearing.
更多
查看译文
关键词
dolphin,temporal window,onset
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要