Modeling Strategies for the Propagation of Terminal Double Bonds During the Polymerization of N-Vinylpyrrolidone and Experimental Validation

MACROMOLECULAR REACTION ENGINEERING(2020)

引用 6|浏览1
暂无评分
摘要
Based on a recently suggested reaction mechanism, which involves the production and propagation of terminal double bonds (TDBs), kinetic models for the polymerization of N-vinylpyrrolidone in aqueous solution are developed. Two modeling strategies, the classes and the pseudodistribution approach, are applied to handle the multidimensional property distributions that result from this reaction mechanism and to get detailed structural property information, e.g., on the chain length distribution and the distribution of TDBs. The structural property information is then used to develop reduced models with significantly lower computational effort, which can be used for process design, on-line applications or coupled to computational fluid dynamic simulations. To validate the derivations, the models are first compared against each other and finally to experimental results from a continuous stirred tank reactor. The evolution of monomer conversion and molecular weight average data as well as molecular weight distributions can be represented very well by the models that are derived in this article. These results support the correctness of the reaction mechanism predicted by quantum mechanical simulations.
更多
查看译文
关键词
kinetic modeling,propagation of terminal double bonds,pseudodistributions,radical polymerization,side reactions
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要