谷歌浏览器插件
订阅小程序
在清言上使用

Polycaprolactone based electrospun matrices loaded with Ag/hydroxyapatite as wound dressings: Morphology, cell adhesion, and antibacterial activity

International journal of pharmaceutics(2021)

引用 52|浏览8
暂无评分
摘要
The development of a scaffold matrix that can inhibit bacterial infection and promote wound healing simultaneously is an essential demand to improve the health care system. Hydroxyapatite (HAP) doped with different concentrations of silver ions (Ag+) were incorporated into electrospun nanofibrous scaffolds of polycaprolactone (PCL) using the electrospinning technique. The formed phase was identified using XRD, while the morphological and roughness behavior were investigated using FESEM. It was shown that scaffolds were configured in randomly distributed nanofibers with diameters around of 0.19–0.40, 0.31–0.54, 1.36, 0.122–0.429 μm for 0.0Ag-HAP@PCL, 0.2Ag-HAP@PCL, 0.6Ag-HAP@PCL, and 0.8Ag-HAP@PCL, respectively. Moreover, the maximum roughness peak height increased significantly from 179 to 284 nm, with the lowest and highest contributions of Ag. The mechanical properties were examined and displayed that the tensile strength increased from 3.11 ± 0.21 MPa to its highest value at 3.57 ± 0.31 MPa for 0.4Ag-HAP@PCL. On the other hand, the cell viability also was enhanced with the addition of Ag and improved from 97.1 ± 4.6% to be around 102.3 ± 3.1% at the highest contribution of Ag. The antibacterial activity was determined, and the highest imbibition zones were achieved at the highest Ag dopant to be 12.5 ± 1.1 mm and 11.4 ± 1.5 mm against E. coli and S. aureus. The in vitro cell proliferation was observed through human fibroblasts cell lone (HFB4) and illustrated that cells were able to grow and spread not only on the fibers’ surface but also, they were spreading and adhered through the deep pores.
更多
查看译文
关键词
Wound healing,Electrospun nanofibers,Hydroxyapatite,Silver
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要