谷歌浏览器插件
订阅小程序
在清言上使用

Daylight-activated fumigant detoxifying nanofibrous membrane based on thiol-ene click chemistry.

Journal of hazardous materials(2020)

引用 6|浏览6
暂无评分
摘要
Daylight-activated detoxifying nanofibrous membranes (LDNMs) are fabricated by grafting benzophenone-3,3',4,4'-tetracarboxylic dianhydride (BD) and biological thiols successively on poly(vinyl alcohol-co-ethylene) (EVOH) nanofibrous membrane. Taking the merits of photoactivity of BD, high-reactivity of biological thiols, and high specific surface area and porosity of the nanofibrous membrane, 1,3-dichloropropene (1,3-D) can be efficiently detoxified on the LDNMs under daylight irradiation via a thiol-ene click reaction. The detoxification function of the LDNMs is "switched on" by light irradiation and continues by following a cascade of chemical attacks of thiyl radicals formed during the photoexcitation process. The resultant LDNMs present rapid detoxification rate (i.e., t1/2 =~30 min) and massive detoxification amount (i.e., ~12 mg/g) against 1,3-D vapor under ambient conditions. More importantly, the LDNMs perform a detoxification tailing effect after moving the light-irradiated membrane to a dark environment, thus ensuring the protective function in the absence of sufficient light sources. The detoxification property of the LDNMs in an outdoor environment with sunlight irradiation shows comparable results to the lab-scale outcomes, enabling them to serve as innovative materials for personal protective equipment in practical applications. The successful fabrication of LDNMs may inspire new insights into the design of protective materials providing aggressive protection.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要