谷歌浏览器插件
订阅小程序
在清言上使用

Observation of spin-polarized directive coupling of light at bound states in the continuum

OPTICA(2019)

引用 32|浏览7
暂无评分
摘要
Spin-polarized directive coupling of light associated with the photonic quantum spin-Hall effect (QSHE) is a nanoscale phenomenon based on strong spin-orbit interaction that has recently attracted significant attention. Herein, we discuss the experimental manifestation of QSHE intrinsic in the Bloch waves associated with a bound state in the continuum (BIC) of a dielectric photonic crystal metasurface (PhCM). We show numerically that BICs in nanoscale PhCMs have photonic spin angular momentum density transverse to the orbital momentum not only at the interfaces but also inside the confining dielectric medium. Then, we experimentally demonstrate that the fundamental Bloch waves of the BIC mode, macroscopically amplified on resonance, propagate along the symmetry axes of the PhCM obeying spin-momentum locking also at normal incidence, i.e., with no symmetry breaking. This BIC-enhanced spin-directive coupling of light may enable versatile implementations of spin-optical structures, paving the way for novel photonic spin multiplatform devices. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
更多
查看译文
关键词
directive coupling,spin-polarized
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要