Trpv5 Attenuates Abdominal Aortic Aneurysm In Mice By Regulating Klf4-Dependent Phenotype Switch Of Aortic Vascular Smooth Muscle Cells

ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS(2021)

引用 12|浏览53
暂无评分
摘要
Abdominal aortic aneurysm (AAA) is a fatal vascular disease with insidious symptoms. However, the mechanism behind its development remains unclear. The transient receptor potential vanilloid (TRPV) family has crucial protective effects against cardiovascular diseases, but the role of TRPV5 in AAA has yet to be reported. In this study, ApoE(-/-) mice were intraperitoneally injected with AAV-GFP or AAV-TRPV5. After 30 days, mice were further administered with angiotensin II (Ang II, 1.44 mg/kg/day) by using osmotic pumps to induce the AAA model or Saline for 28 days, (i.e., Saline + AAV-GFP, Saline + AAV-TRPV5, Ang II + AAV-GFP and Ang II + AAV-TRPV5 groups were established). Compared with the control group, the incidence of AAA and the maximal diameter of the abdominal aorta markedly decreased in Ang II + AAV-TRPV5, which was detected by vascular ultrasound at 28 day. Meanwhile, less collagen and elastin degradation were observed in the Ang II + AAV-TRPV5 group by using Masson and Elastin stains. Moreover, more alpha-SMA and less MMP2 was observed in the abdominal aortas collected at 28 day by immunohistochemistry. In vitro, primary mouse vascular smooth muscle cells (VSMCs) were treated with Ang II (1 mu M) to induce phenotype switch. Sh-TRPV5 and AdTRPV5 were used to transfect VSMCs. PCR and Western blotting were used to access the expression of contractile marker, including alpha-SMA and SM-22 alpha. The results showed that the mRNA and protein level of alpha-SMA and SM-22 alpha were decreased under the stimulation of Ang II, but could be attenuated by TRPV5 overexpression. The cell scratch assay demonstrated that the migration ability of VSMCs was increased in Ang II treated group and could be ameliorated by TRPV5 overexpression. Above all, VSMCs transformed from the contractile into secretory phenotype under Ang II stimuli, but could be rescued by TRPV5 overexpression. Furthermore, TRPV5 overexpression suppressed the increased expression of KLF4 induced by Ang II treatment in VSMCs. The data demonstrated that TRPV5 could inhibit AAA formation and play a critical role in the VSMC phenotype switch by downregulating KLF4, suggesting TRPV5 as a new strategy for treating AAA.
更多
查看译文
关键词
TRPV5, Abdominal aortic aneurysm, Vascular smooth muscle cell, Phenotype switch
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要