Electrochemical Stability Investigations And Drug Toxicity Tests Of Electrolyte-Gated Organic Field-Effect Transistors

ACS APPLIED MATERIALS & INTERFACES(2020)

引用 14|浏览4
暂无评分
摘要
Electrolyte-gated organic field-effect transistors (EGOFETs) are emerging as a new frontier of organic bioelectronics, with promising applications in biosensing, pharmaceutical testing, and neuroscience. However, the limited charge carriers' mobility and well-known environmental instability of conjugated polymers constrain the real applications of organic bioelectronics. Here, we comparatively studied the electrochemical stability of p-type conjugated polymer films in the EGOFET configuration. By combining electrochemical stability tests, morphology characterization, and EQCM-D monitoring, we find that a donor-acceptor copolymer, poly(N-alkyldiketopyrrolo-pyrrole-dithienylthieno[3,2-b]thiophene) (DPP-DTT) shows improved mobility and electrochemical stability under an electrolyte, which may benefit from the ordered morphology and close alkyl side-chains' interdigitation preventing water diffusion and ion doping during long-term operation under an electrolyte. Based on the DPP-DTT EGOFETs, we have demonstrated a low-cost drug toxicity test platform that is sensitive enough to distinguish the cytotoxicity of different chemicals. This study overall pushes forward the development of organic bioelectronics with enhanced stability and sensitivity and presents successful exploitation of EGOFET in pharmaceutical research.
更多
查看译文
关键词
electrolyte-gated organic field-effect transistor, p-type conjugated polymers, electrochemical stability, EQCM-D, drug toxicity tests
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要