Hardness of Learning Halfspaces with Massart Noise

arxiv(2021)

引用 3|浏览72
暂无评分
摘要
We study the complexity of PAC learning halfspaces in the presence of Massart (bounded) noise. Specifically, given labeled examples $(x, y)$ from a distribution $D$ on $\mathbb{R}^{n} \times \{ \pm 1\}$ such that the marginal distribution on $x$ is arbitrary and the labels are generated by an unknown halfspace corrupted with Massart noise at rate $\eta<1/2$, we want to compute a hypothesis with small misclassification error. Characterizing the efficient learnability of halfspaces in the Massart model has remained a longstanding open problem in learning theory. Recent work gave a polynomial-time learning algorithm for this problem with error $\eta+\epsilon$. This error upper bound can be far from the information-theoretically optimal bound of $\mathrm{OPT}+\epsilon$. More recent work showed that {\em exact learning}, i.e., achieving error $\mathrm{OPT}+\epsilon$, is hard in the Statistical Query (SQ) model. In this work, we show that there is an exponential gap between the information-theoretically optimal error and the best error that can be achieved by a polynomial-time SQ algorithm. In particular, our lower bound implies that no efficient SQ algorithm can approximate the optimal error within any polynomial factor.
更多
查看译文
关键词
learning theory,hardness of learning,halfspaces,Massart noise,Learning with Errors (LWE)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要