谷歌浏览器插件
订阅小程序
在清言上使用

Enhancing the Activity and Thermal Stability of a Phthalate-Degrading Hydrolase by Random Mutagenesis.

Ecotoxicology and Environmental Safety(2020)

引用 16|浏览15
暂无评分
摘要
Our previous work has reported that EstJ6 was a phthalate-degrading hydrolase. In the study, a random mutant library was constructed by two rounds of error-prone PCR, three mutants (ET1.1, ET2.1, and ET2.2) with enhanced hydrolytic activity against dibutyl phthalate (DBP) were obtained. The best mutant ET2.2, accumulated three amino acid substitutions (Thr91Met, Ala67Val, and Val249Ile) and exhibited 2.8-fold increase enzyme activity and 2.3-fold higher expression level. Meanwhile, compared with EstJ6, ET2.2 showed over 50% improvement in thermostability (at 50 °C for 1 h) and 1.2-fold increase in 50% methanol tolerance. Kinetic parameters analysis revealed that the Km value for ET2.2 decreased by 60% and the kcat/Km value increased by 166%. The molecular docking indicated that the shortening of hydrogen bond between Ser146-OH and DBP-CO, which may led to an increase in enzyme activity and catalytic efficiency, the enhancement of hydrophobicity of hydrophobic pocket was related to the improvement of organic solvents tolerance, and three hydrophobic amino acid substitutions Thr91Met, Ala67Val, and Val249Ile facilitated to improve the thermal stability and organic solvents tolerance. These results confirmed that random mutagenesis was an effective tool for improving enzyme properties and lay a foundation for practical applications of phthalate-degrading hydrolase in biotechnology and industrial fields.
更多
查看译文
关键词
Phthalate-degrading hydrolase,Random mutagenesis,Enzyme activity,Thermal stability,Organic solvent tolerance,Molecular docking
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要