Joint Air Quality And Weather Predictions Based On Multi-Adversarial Spatiotemporal Networks

THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE(2021)

引用 49|浏览164
暂无评分
摘要
Accurate and timely air quality and weather predictions are of great importance to urban governance and human livelihood. Though many efforts have been made for air quality or weather prediction, most of them simply employ one another as feature input, which ignores the inner-connection between two predictive tasks. On the one hand, the accurate prediction of one task can help improve another task's performance. On the other hand, geospatially distributed air quality and weather monitoring stations provide additional hints for city-wide spatiotemporal dependency modeling. Inspired by the above two insights, in this paper, we propose the Multi-adversarial spatiotemporal recurrent Graph Neural Networks (MasterGNN) for joint air quality and weather predictions. Specifically, we first propose a heterogeneous recurrent graph neural network to model the spatiotemporal autocorrelation among air quality and weather monitoring stations. Then, we develop a multi-adversarial graph learning framework to against observation noise propagation introduced by spatiotemporal modeling. Moreover, we present an adaptive training strategy by formulating multi-adversarial learning as a multi-task learning problem. Finally, extensive experiments on two real-world datasets show that MasterGNN achieves the best performance compared with seven baselines on both air quality and weather prediction tasks.
更多
查看译文
关键词
spatiotemporal networks,weather prediction,joint air quality,multi-adversarial
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要