Simultaneous Reduction Of Antibiotics And Antibiotic Resistance Genes In Pig Manure Using A Composting Process With A Novel Microbial Agent

ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY(2021)

引用 22|浏览8
暂无评分
摘要
In recent years, in order to promote animal growth and reduce the risk of disease, a variety of antibiotics are frequently added to the animal feed of livestock and poultry. However, these antibiotics can not be fully digested by animals and most of them are excreted with feces, consequently causing the enrichment of antibiotic resistance genes (ARGs) and huge environmental risks. Nowadays, composting is a better option to solve these problems. Accordingly, this study explored the effects of co-composting swine manure with different inoculants dominated by Phanerochaete chrysosporium (p), Aspergillus niger (a), and Bacillus licheniformis (b) on the simultaneous removal of multiple antibiotics and resistance genes and evolution of the bacterial community. The results showed that the highest removal extent of tetracycline and oxytetracycline occurred in pile D (p:b: a=1:5:5, biomass) reaching 89.2% and 87.8%, respectively, while the highest removal extent of doxycycline and enrofloxacin occurred in pile A (p:b:a=1:0:0, biomass) reaching 98.6% and 89%, respectively. Compared with the levels in pile B (control check), in pile D, ARGs, except those for sulfonamides, decreased by 1.059 x 10(-3)-6.68 x 10(-2) gene copies/16S rRNA copies. Inoculation with p alone effectively reduced intI1 and intI2. Canonical correspondence analysis (CCA) that microbial community structure evolution had a greater influence on ARGs than environmental factors. In summary, this study provided a feasible way to efficiently remove the antibiotics and antibiotic resistance genes in pig manure.
更多
查看译文
关键词
Inoculants, Antibiotics, Antibiotic resistance genes, Microbial community structure
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要