Enhanced Photoelectrochemical Water-Splitting Performance With A Hierarchical Heterostructure: Co3o4 Nanodots Anchored Tio2@P-C3n4 Coreshell Nanorod Arrays

CHEMICAL ENGINEERING JOURNAL(2021)

引用 55|浏览40
暂无评分
摘要
Excellent transfer and separation of photogenerated charges were achieved by a hierarchical construction: 1-D (one-dimensional) TiO2 nanorod arrays were encapsulated with phosphorous doped graphitic carbon nitride (P-C3N4), decorated with highly dispersed 0-D (zero-dimensional) Co3O4 nanodots. With the P-C3N4 and Co3O4 involved, the Co3O4/P-C3N4/TiO 2 ternary photoanode show improved visible lights absorption, increased carrier density, and better PEC performance. The matched and continuous energy band positions in hierarchical Co3O4/P-C3N4/TiO2 photoanode effectively facilitate the photogenerated holes swiftly diffusing from 1-D TiO2@P-C3N4 core-shell structure to the surface of 0-D Co3O4 nanodots, while the photogenerated electrons of photoanode leave to counter electrode. The short diffusion path for holes in 0-D Co3O4 nanodots suppresses the accumulation of surface positive charge (holes). This study provides a perspective for investigating photoelectrochemical water splitting in the Co3O4/P-C3N4/TiO2 heterostructural photoanode for enhanced visible light response.
更多
查看译文
关键词
Hierarchical construction, Co3O4 nanodots, Phosphorous doped graphitic carbon nitride, TiO2 nanorod arrays, Photoelectrochemical water splitting
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要