What Can We Learn from Comparing Glacio-Hydrological Models?

ATMOSPHERE(2020)

引用 3|浏览11
暂无评分
摘要
Glacio-hydrological models combine both glacier and catchment hydrology modeling and are used to assess the hydrological response of high-mountain glacierized catchments to climate change. To capture the uncertainties from these model combinations, it is essential to compare the outcomes of several model entities forced with the same climate projections. For the first time, we compare the results of two completely independent glacio-hydrological models: (i) HQsim-GEM and (ii) AMUNDSEN. In contrast to prevailing studies, we use distinct glacier models and glacier initialization times. At first glance, the results achieved for future glacier states and hydrological characteristics in the Rofenache catchment in otztal Alps (Austria) appear to be similar and consistent, but a closer look reveals clear differences. What can be learned from this study is that low-complexity models can achieve higher accuracy in the calibration period. This is advantageous especially when data availability is weak, and priority is given to efficient computation time. Furthermore, the time and method of glacier initialization play an important role due to different data requirements. In essence, it is not possible to make conclusions about the model performance outside of the calibration period or more specifically in the future. Hence, similar to climate modeling, we suggest considering different modeling approaches when assessing future catchment discharge or glacier evolution. Especially when transferring the results to stakeholders, it is vital to transparently communicate the bandwidth of future states that come with all model results.
更多
查看译文
关键词
climate change,glacier retreat,glacio-hydrological models,model comparison,modeling future runoff,glacierized catchments,snow and ice melt,catchment hydrology
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要