Influence Of Cavity Geometry Towards Plasmonic Gap Tolerance And Respective Near-Field In Nanoparticle-On-Mirror

CURRENT APPLIED PHYSICS(2020)

引用 6|浏览7
暂无评分
摘要
In this work, we emphasize the importance of cavity geometry along with nanoparticle shape and plasmonic nanogap (based on a nanoparticle on a metallic film (NPOM) design) which plays significant role in under-standing the complex plasmonic mode characteristics involving nanoparticle and gap mode resonances. The cross-section imprint of planar cavity on metallic film plays decisive role in near field enhancement properties at similar NP size and plasmonic nanogap conditions for spherical and cubical NPOM systems. By mimicking the NPOM structure to metal-insulator-metal design, we understand the resonant emission differences for the respective plasmonic modes. Influence of dominant and weaker gap mode resonances resulted in an interesting optical behavior (fluctuations in near field enhancement strength) in NP mode in case of cubical nanostructures. By such extensive investigation and interpretation of sub-wavelength complex plasmonic mode characteristics, various practical applications in plasmonics field can be accomplished.
更多
查看译文
关键词
Nano-particle-on-mirror, Simulations, Plasmonic modes, Nanoparticle, Near field enhancement
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要