Capillary-Fed, Thin Film Evaporation Devices

JOURNAL OF APPLIED PHYSICS(2020)

引用 57|浏览24
暂无评分
摘要
Evaporation plays a critical role in a range of technologies that power and sustain our society. Wicks are widely used as passive, capillary-fed evaporators, attracting much interest since these devices are highly efficient, compact, and thermally stable. While wick-based evaporators can be further improved with advanced materials and fabrication techniques, modeling of heat and mass transport at the device level is vital for guiding these innovations. In this perspective, we present the design and optimization of capillary-fed, thin film evaporation devices through a heat and mass transfer lens. This modeling framework can guide future research into materials innovations, fabrication of novel architectures, and systems design/optimization for next generation, high-performance wick-based evaporators. Furthermore, we describe specific challenges and opportunities for the fundamental understanding of evaporation physics. Finally, we apply our modeling framework to the analysis of two important applications-solar vapor generation and electronics cooling devices.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要