Outdoor Cultivation Of Chlorella Pyrenoidosa In Paddy-Soaked Wastewater And A Feasibility Study On Biodiesel Production From Wet Algal Biomass Through In-Situ Transesterification

BIOMASS & BIOENERGY(2020)

引用 14|浏览7
暂无评分
摘要
Sustainable resources management, incorporating energy markets and resources such as electricity, fossil fuels, renewable and sustainable energy capital is essential for society to understand production and conversion of various forms of energy, their current as well as future supply. Waste-to-energy (WTE) or energy-from-waste (EFW) is a well-identified transitional technology which could prevent complete depletion of renewable resources. In our present study, the selected microalgae (Chlorella pyrenoidosa) was cultured in paddy-soaked wastewater (PWW) using outdoor raceway ponds of 50 L capacity where biotransformation of nutrients (NH3-N removal: 75.89 +/- 0.69%; PO4-P removal: 73.71 +/- 0.75%; yield co-efficient YN: 6.12 mg biomass/mg of N; YP: 7.77 mg biomass/mg P) has occurred with better growth and biochemical composition (dry biomass weight: 1.56 +/- 0.11 g/L; chlorophyll: 15.57 +/- 0.14 mg/L; specific growth rate (SGR): 0.42/d; lipids: 27.47 +/- 1.41% biomass; carbohydrates: 23.77 +/- 1.00% and protein: 46.12 +/- 3.55%). Further, the obtained algal lipid was identified for a wide range of fatty acid methyl esters (FAME) and consequently brought forward to in-situ single-step transesterification by optimizing reaction conditions. Central composite design (CCD) of response surface methodology (RSM) has given optimized conditions of sample amount: 2 g (wet); methanol sulphuric acid volume: 3 mL; and hexane volume: 4 mL, under the reaction temperature of 90 degrees C for maximum biodiesel conversion (46.54% of algal lipids). The outcome of our current research may add value to the application and development of WTE technology for sustainable energy conservation.
更多
查看译文
关键词
Phycoremediation, Rice mill wastewater, Bio-diesel production, Chlorella pyrenoidosa, Algal technology, Single-step transesterification
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要