Microscopic Observation Of Solid Electrolyte Interphase Bilayer Inversion On Silicon Oxide

ACS ENERGY LETTERS(2020)

引用 26|浏览27
暂无评分
摘要
Silicon has been investigated in recent years as an alloying anode material to enhance gravimetric energy density in lithium-ion batteries. While recent developments have suggested that silicon oxides exhibit improved cycling stability over pure Si, the origin of the improved cycling performance is still poorly understood. The initial solid electrolyte interphase (SEI) formation mechanisms on Si wafers with both native oxide and chemically etched thermal oxide coatings are investigated structurally, chemically, and morphologically in the nanoscale. After one electrochemical cycle, microscopy reveals that SEI formed on native SiOx features the typical SEI bilayer structure with a carbon-rich outer SEI layer and an inorganic-rich inner SEI layer. In contrast, the SEI formed on chemically etched thermal oxide shows an inversion in the structure. This work observes distinct initial SEI formation mechanisms on the HF-etched SiO2 surface, which may be partially responsible for improved cycle life observed in SiOx-based anode materials.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要