谷歌浏览器插件
订阅小程序
在清言上使用

Abstract 507: Activation of the Classically Pro-Apoptotic Death Receptor 5 Promotes Physiological Hypertrophy and Cardiomyocyte Survival

Circulation research(2020)

引用 0|浏览8
暂无评分
摘要
Heart failure is hallmarked by a combination of cardiomyocyte hypertrophy and death. Apoptosis, one of the primary mechanisms of cell death, occurs through finely tuned extrinsic or intrinsic pathways. Of the mediators involved in extrinsic apoptotic signaling, some have been extensively studied, such as tumor necrosis factor ((TNF)-α), while others have been relatively untouched. One such receptor is Death Receptor 5 (DR5) which, along with its ligand TNF-Related Apoptosis Inducing Ligand (TRAIL), have recently been implicated as a biomarker in determining the progression and outcome in patients following multiple heart failure etiologies, suggesting a novel role of DR5 signaling in the heart. These studies suggest a potentially protective role for DR5 in the heart; however, the function of TRAIL/DR5 in the heart has been virtually unstudied. Our goal was to explore the role of TRAIL/DR5 in cardiomyocyte hypertrophy and survival with the hypothesis that DR5 promotes cardiomyocyte survival and growth through non-canonical mechanisms. Mice treated with the DR5 agonist bioymifi or a DR5 agonist antibody, MD5-1, were absent of cell death, while an increase in hypertrophy was observed without a decline in cardiac function. In isolated cardiomyocytes, this pro-hypertrophic phenotype was determined to operate through MMP-dependent cleavage of HB-EGFR, leading to transactivation of EGFR and ERK1/2 signaling. To determine the role of DR5 in heart failure, a chronic catecholamine administration model was used and DR5 activation was found to decrease cardiomyocyte death and cardiac fibrosis. ERK1/2, a well characterized pro-survival, pro-hypertrophic kinase is activated in the heart with DR5 agonist administration and may represent the mechanistic link through which DR5 is imparting cardioprotection. In summary, DR5 activation promotes cardiomyocyte hypertrophy and survival and prevents cardiac fibrosis via a non-canonical MMP-EGFR-ERK1/2 pathway. Taken together, these studies identify a previously undetermined role for DR5 in the heart and identify novel therapeutic target for the treatment of heart failure.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要