谷歌浏览器插件
订阅小程序
在清言上使用

Thickness-dependent Properties of Ultrathin Bismuth and Antimony Chalcogenide Films Formed by Physical Vapor Deposition and Their Application in Thermoelectric Generators

Materials today energy(2021)

引用 21|浏览3
暂无评分
摘要
In this work, a simple cost-effective physical vapor deposition method for obtaining high-quality Bi2Se3 and Sb2Te3 ultrathin films with thicknesses down to 5 nm on mica, fused quartz, and monolayer graphene substrates is reported. Physical vapor deposition of continuous Sb2Te3 ultrathin films with thicknesses 10 nm and below is demonstrated for the first time. Studies of thermoelectrical properties of synthesized Bi2Se3 ultrathin films deposited on mica indicated opening of a hybridization gap in Bi2Se3 ultrathin films with thicknesses below 6 nm. Both Bi2Se3 and Sb2Te3 ultrathin films showed the Seebeck coefficient and thermoelectrical power factors comparable with the parameters obtained for the high-quality thin films grown by the molecular beam epitaxy method. Performance of the best Bi2Se3 and Sb2Te3 ultrathin films is tested in the two-leg prototype of a thermoelectric generator. (C) 2020 Elsevier Ltd. All rights reserved.
更多
查看译文
关键词
Ultrathin film,Narrow band gap layered semiconductor,Bismuth chalcogenide,Antimony telluride,Thickness-dependent thermoelectric properties
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要