谷歌浏览器插件
订阅小程序
在清言上使用

Molecular Properties of Bare and Microhydrated Vitamin B5–Calcium Complexes

International Journal of Molecular Sciences(2021)

引用 5|浏览33
暂无评分
摘要
Pantothenic acid, also called vitamin B5, is an essential nutrient involved in several metabolic pathways. It shows a characteristic preference for interacting with Ca(II) ions, which are abundant in the extracellular media and act as secondary mediators in the activation of numerous biological functions. The bare deprotonated form of pantothenic acid, [panto-H]−, its complex with Ca(II) ion, [Ca(panto-H)]+, and singly charged micro-hydrated calcium pantothenate [Ca(panto-H)(H2O)]+ adduct have been obtained in the gas phase by electrospray ionization and assayed by mass spectrometry and IR multiple photon dissociation spectroscopy in the fingerprint spectral range. Quantum chemical calculations at the B3LYP(-D3) and MP2 levels of theory were performed to simulate geometries, thermochemical data, and linear absorption spectra of low-lying isomers, allowing us to assign the experimental absorptions to particular structural motifs. Pantothenate was found to exist in the gas phase as a single isomeric form showing deprotonation on the carboxylic moiety. On the contrary, free and monohydrated calcium complexes of deprotonated pantothenic acid both present at least two isomers participating in the gas-phase population, sharing the deprotonation of pantothenate on the carboxylic group and either a fourfold or fivefold coordination with calcium, thus justifying the strong affinity of pantothenate for the metal.
更多
查看译文
关键词
pantothenate,vitamin B5,calcium,complexation,IRMPD spectroscopy,quantum chemistry calculations,molecular structure
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要