谷歌浏览器插件
订阅小程序
在清言上使用

Differential Expression and Functional Analysis of CircRNA in the Ovaries of Low and High Fecundity Hanper Sheep

Reproduction in domestic animals(2021)

引用 10|浏览14
暂无评分
摘要
Litter size is a considerable quality that determines the production efficiency of mutton sheep. Therefore, revealing the molecular regulation of high and low fertility may aid the breeding process to develop new varieties of mutton sheep. CircRNAs are the important factors regulating follicular development, but their mechanism role in the regulation of litter size in Hanper sheep is not clear. In the present study, ovarian tissues from the follicular (F) or luteal phase (L) of Hanper sheep that were either consecutive monotocous (M) or polytocous were collected. Then, we performed transcriptome sequencing to screen for differentially expressed circRNAs (DE-circRNAs) and elucidate their function. In total, 4256 circRNA derived from 2184 host genes were identified in which 183 (146 were upregulated, while 37 were downregulated) were differentially expressed in monotocous sheep in the follicular phase versus polytocous sheep in the follicular phase (MF vs. PF). Moreover, 34 circRNAs (14 were upregulated, while 20 were downregulated) were differentially expressed in monotocous sheep in the luteal phase versus polytocous sheep in the luteal sheep (ML vs. PL). This was achieved through DE-circRNAs function enrichment annotation analysis by GESA, GO, and KEGG, which function through the EGF-EGFR-RAS-JNK, TGF-β and thyroid hormone signaling pathway to affect the litter size of Hanper sheep in MF vs. PF and ML vs. PL. STEM results showed that MAPK signaling pathways play a key role in MF vs. PF and ML vs. PL. Through WGCNA analysis, AKT3 was a core gene in MF vs. PF and ML vs. PL. Moreover, competitive endogenous RNA (ceRNA) network analysis revealed the target binding sites for miRNA such as oar-miR-27a, oar-miR-16b, oar-miR-200a/b/c, oar-miR-181a, oar-miR-10a/b, and oar-miR-432 in the identified DE-cirRNAs.
更多
查看译文
关键词
fecundity,functional enrichment,Hanper sheep,circRNAs,ovary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要