谷歌浏览器插件
订阅小程序
在清言上使用

Interpenetrating Lattices With Enhanced Mechanical Functionality

ADDITIVE MANUFACTURING(2021)

引用 42|浏览7
暂无评分
摘要
Metamaterials derive their unusual properties from their architected structure, which generally consists of a repeating unit cell designed to perform a particular function. However, existing metamaterials are, with few exceptions, physically continuous throughout their volume, and thus cannot take advantage of multi-body behavior or contact interactions. Here we introduce the concept of multi-body interpenetrating lattices, where two or more lattices interlace through the same volume without any direct connection to each other. This new design freedom allows us to create architected interpenetrating structures where energy transfer is controlled by surface interactions. As a result, multifunctional or composite-like responses can be achieved even with only a single print material. While the geometry defining interpenetrating lattices has been studied since the days of Euclid, additive manufacturing allows us to turn these mathematical concepts into physical objects with programmable interface-dominated properties. In this first study on interpenetrating lattices, we reveal remarkable mechanical properties including improved toughness, multi-stable/negative stiffness behavior, and electromechanical coupling.
更多
查看译文
关键词
Metamaterial, Interface engineering, lattice, Polyhedra, Geometry, Additive manufacturing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要