Whole Genome Sequencing Identifies Novel Genetic Mutations In Patients With Eczema Herpeticum

ALLERGY(2021)

引用 13|浏览30
暂无评分
摘要
Background Eczema herpeticum (EH) is a rare complication of atopic dermatitis (AD) caused by disseminated herpes simplex virus (HSV) infection. The role of rare and/or deleterious genetic variants in disease etiology is largely unknown. This study aimed to identify genes that harbor damaging genetic variants associated with HSV infection in AD with a history of recurrent eczema herpeticum (ADEH+).Methods Whole genome sequencing (WGS) was performed on 49 recurrent ADEH+ (>= 3 EH episodes), 491 AD without a history of eczema herpeticum (ADEH-) and 237 non-atopic control (NA) subjects. Variants were annotated, and a gene-based approach (SKAT-O) was used to identify genes harboring damaging genetic variants associated with ADEH+. Genes identified through WGS were studied for effects on HSV responses and keratinocyte differentiation.Results Eight genes were identified in the comparison of recurrent ADEH+to ADEH-and NA subjects: SIDT2, CLEC7A, GSTZ1, TPSG1, SP110, RBBP8NL, TRIM15, and FRMD3. Silencing SIDT2 and RBBP8NL in normal human primary keratinocytes (NHPKs) led to significantly increased HSV-1 replication. SIDT2-silenced NHPKs had decreased gene expression of IFNk and IL1b in response to HSV-1 infection. RBBP8NL-silenced NHPKs had decreased gene expression of IFNk, but increased IL1b. Additionally, silencing SIDT2 and RBBP8NL also inhibited gene expression of keratinocyte differentiation markers keratin 10 (KRT10) and loricrin (LOR).Conclusion SIDT2 and RBBP8NL participate in keratinocyte's response to HSV-1 infection. SIDT2 and RBBP8NL also regulate expression of keratinocyte differentiation genes of KRT10 and LOR.
更多
查看译文
关键词
atopic dermatitis, eczema herpeticum, genetics, herpes simplex virus, SIDT2, whole genome sequencing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要