Testing Independence Between Linear Combinations For Causal Discovery

THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE(2021)

引用 15|浏览104
暂无评分
摘要
Recently, regression based conditional independence (CI) tests have been employed to solve the problem of causal discovery. These methods provide an alternative way to test for CI by transforming CI to independence between residuals. Generally, it is nontrivial to check for independence when these residuals are linearly uncorrelated. With the ability to represent high-order moments, kernel-based methods are usually used to achieve this goal, but at a cost of considerable time. In this paper, we investigate the independence between two linear combinations under linear non-Gaussian structural equation model (SEM). We show that generally the 1-st to 4-th moments of the two linear combinations contain enough information to infer whether or not they are independent. The proposed method provides a simpler but more effective way to measure CIs, with only calculating the 1-st to 4-th moments of the input variables. When applied to causal discovery, the proposed method outperforms kernel-based methods in terms of both speed and accuracy. which is validated by extensive experiments.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要