Surface Doping Of Organic Single-Crystal Semiconductors To Produce Strain-Sensitive Conductive Nanosheets

ADVANCED SCIENCE(2021)

引用 7|浏览12
暂无评分
摘要
A highly periodic electrostatic potential, even though established in van der Waals bonded organic crystals, is essential for the realization of a coherent band electron system. While impurity doping is an effective chemical operation that can precisely tune the energy of an electronic system, it always faces an unavoidable difficulty in molecular crystals because the introduction of a relatively high density of dopants inevitably destroys the highly ordered molecular framework. In striking contrast, a versatile strategy is presented to create coherent 2D electronic carriers at the surface of organic semiconductor crystals with their precise molecular structures preserved perfectly. The formation of an assembly of redox-active molecular dopants via a simple one-shot solution process on a molecularly flat crystalline surface allows efficient chemical doping and results in a relatively high carrier density of 10(13) cm(-2) at room temperature. Structural and magnetotransport analyses comprehensively reveal that excellent carrier transport and piezoresistive effects can be obtained that are similar to those in bulk crystals.
更多
查看译文
关键词
2D electronic system, molecular doping, organic semiconductors, piezoresistive effect, single crystals
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要