The Optimality of Polynomial Regression for Agnostic Learning under Gaussian Marginals

arxiv(2021)

引用 5|浏览39
暂无评分
摘要
We study the problem of agnostic learning under the Gaussian distribution. We develop a method for finding hard families of examples for a wide class of problems by using LP duality. For Boolean-valued concept classes, we show that the $L^1$-regression algorithm is essentially best possible, and therefore that the computational difficulty of agnostically learning a concept class is closely related to the polynomial degree required to approximate any function from the class in $L^1$-norm. Using this characterization along with additional analytic tools, we obtain optimal SQ lower bounds for agnostically learning linear threshold functions and the first non-trivial SQ lower bounds for polynomial threshold functions and intersections of halfspaces. We also develop an analogous theory for agnostically learning real-valued functions, and as an application prove near-optimal SQ lower bounds for agnostically learning ReLUs and sigmoids.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要