Hollow-fiber bioreactor production of extracellular vesicles from human bone marrow mesenchymal stromal cells yields nanovesicles that mirrors the immuno-modulatory antigenic signature of the producer cell

STEM CELL RESEARCH & THERAPY(2021)

引用 44|浏览12
暂无评分
摘要
Background Extracellular vesicles (EVs) produced by human bone marrow-derived mesenchymal stromal cells (hBM-MSCs) are currently investigated for their clinical effectiveness towards immune-mediated diseases. The large amounts of stem cell-derived EVs required for clinical testing suggest that bioreactor production systems may be a more amenable alternative than conventional EV production methods for manufacturing products for therapeutic use in humans. Methods To characterize the potential utility of these systems, EVs from four hBM-MSC donors were produced independently using a hollow-fiber bioreactor system under a cGMP-compliant procedure. EVs were harvested and characterized for size, concentration, immunophenotype, and glycan profile at three separate intervals throughout a 25-day period. Results Bioreactor-inoculated hBM-MSCs maintained high viability and retained their trilineage mesoderm differentiation capability while still expressing MSC-associated markers upon retrieval. EVs collected from the four hBM-MSC donors showed consistency in size and concentration in addition to presenting a consistent surface glycan profile. EV surface immunophenotypic analyses revealed a consistent low immunogenicity profile in addition to the presence of immuno-regulatory CD40 antigen. EV cargo analysis for biomarkers of immune regulation showed a high abundance of immuno-regulatory and angiogenic factors VEGF-A and IL-8. Conclusions Significantly, EVs from hBM-MSCs with immuno-regulatory constituents were generated in a large-scale system over a long production period and could be frequently harvested with the same quality and quantity, which will circumvent the challenge for clinical application.
更多
查看译文
关键词
Human mesenchymal stromal cells, Extracellular vesicles, Hollow-fiber bioreactor system, Immune-profiling, Glycan, cGMP-compliant environment
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要