谷歌浏览器插件
订阅小程序
在清言上使用

Belowground Fungal Volatiles Perception in Okra (abelmoschus Esculentus) Facilitates Plant Growth under Biotic Stress.

Microbiological research(2021)

引用 11|浏览8
暂无评分
摘要
Microbial volatile organic compounds (mVOCs) have great potential in plant ecophysiology, yet the role of belowground VOCs in plant stress management remains largely obscure. Analysis of biocontrol producing VOCs into the soil allow detailed insight into their interaction with soil borne pathogens for plant disease management. A root interaction trial was set up to evaluate the effects of VOCs released from Trichoderma viride BHU-V2 on soil-inhabiting fungal pathogen and okra plant growth. VOCs released into soil by T. viride BHU-V2 inhibited the growth of collar rot pathogen, Sclerotium rolfsii. Okra plants responded to VOCs by increasing the root growth (lateral roots) and total biomass content. VOCs exposure increased defense mechanism in okra plants by inducing different enzyme activities i.e. chitinase (0.89 fold), β-1,3-glucanase (0.42 fold), peroxidase (0.29 fold), polyphenol oxidase (0.33 fold) and phenylalanine lyase (0.7 fold) when inoculated with S. rolfsii. In addition, T. viride BHU-V2 secreted VOCs reduced lipid peroxidation and cell death in okra plants under pathogen inoculated condition. GC/MS analysis of VOCs blend revealed that T. viride BHU-V2 produced more number of antifungal compounds in soil medium as compared to standard medium. Based on the above observations it is concluded that okra plant roots perceive VOCs secreted by T. viride BHU-V2 into soil that involved in induction of plant defense system against S. rolfsii. In an ecological context, the findings reveal that belowground microbial VOCs may play an important role in stress signaling mechanism to interact with plants.
更多
查看译文
关键词
Biocontrol,Induced systemic resistance,Sclerotium rolfsii,Trichoderma,Volatiles
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要