谷歌浏览器插件
订阅小程序
在清言上使用

Antibiotic Cross-linked Micelles with Reduced Toxicity for Multidrug-Resistant Bacterial Sepsis Treatment.

ACS applied materials & interfaces(2021)

引用 17|浏览15
暂无评分
摘要
One potential approach to address the rising threat of antibiotic resistance is through novel formulations of established drugs. We designed antibiotic cross-linked micelles (ABC-micelles) by cross-linking the Pluronic F127 block copolymers with an antibiotic itself, via a novel one-pot synthesis in aqueous solution. ABC-micelles enhanced antibiotic encapsulation while also reducing systemic toxicity in mice. Using colistin, a hydrophilic, potent ″last-resort" antibiotic, ABC-micelle encapsulation yield was 80%, with good storage stability. ABC-micelles exhibited an improved safety profile, with a maximum tolerated dose of over 100 mg/kg colistin in mice, at least 16 times higher than the free drug. Colistin-induced nephrotoxicity and neurotoxicity were reduced in ABC-micelles by 10-50-fold. Despite reduced toxicity, ABC-micelles preserved bactericidal activity, and the clinically relevant combination of colistin and rifampicin (co-loaded in the micelles) showed a synergistic antimicrobial effect against antibiotic-resistant strains of Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii. In a mouse model of sepsis, colistin ABC-micelles showed equivalent efficacy as free colistin but with a substantially higher therapeutic index. Microscopic single-cell imaging of bacteria revealed that ABC-micelles could kill bacteria in a more rapid manner with distinct cell membrane disruption, possibly reflecting a different antimicrobial mechanism from free colistin. This work shows the potential of drug cross-linked micelles as a new class of biomaterials formed from existing antibiotics and represents a new and generalized approach for formulating amine-containing drugs.
更多
查看译文
关键词
Drug cross-linked micelles,antibiotics,nephrotoxicity,neurotoxicity,sepsis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要