Microscopic Derivation Of Dirac Composite Fermion Theory: Aspects Of Noncommutativity And Pairing Instabilities

PHYSICAL REVIEW B(2021)

引用 6|浏览0
暂无评分
摘要
Building on previous work [N. Read, Phys. Rev. B 58, 16262 (1998); Z. Dong and T. Senthil, Phys. Rev. B 102, 205126 (2020)] on the system of bosons at filling factor nu = 1, we derive the Dirac composite fermion theory for a half-filled Landau level from first principles and apply the Hartree-Fock approach in a preferred representation. On the basis of the microscopic formulation, in the long-wavelength limit, we propose a noncommutative field-theoretical description, which in a commutative limit reproduces the Son's theory, with additional terms that may be expected on physical grounds. The microscopic representation of the problem is also used to discuss pairing instabilities of composite fermions. We find that a presence of a particle-hole symmetry breaking leads to a weak (BCS) coupling p-wave pairing in the lowest Landau level, and strong coupling p-wave pairing in the second Landau level that occurs in a band with nearly flat dispersion, a third power function of momentum.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要