Suppressed Oxidation Of Tin Perovskite By Catechin For Eco-Friendly Indoor Photovoltaics

APPLIED PHYSICS LETTERS(2021)

引用 28|浏览3
暂无评分
摘要
While fabricating tin (Sn)-based perovskite solar cells (PSCs), it is beneficial to tune the bandgap of the perovskite absorber layer by changing the ratio of halide ions, for improved performance. However, oxidation limits the power conversion efficiency (PCE) [Jeon et al., Nat. Mater. 13, 897 (2014); Ke et al., ACS Energy Lett. 3, 1470 (2018); Yang et al., Adv. Energy Mater. 10, 1902584 (2020); Baig et al., Optik 170, 463 (2018)]. Herein, we introduced Catechin into the perovskite layer to suppress oxidation. We achieved FA(0.75)MA(0.25)SnI(2)Br thin films with a low Sn4+ ratio. Owing to Catechin doping, devices yielded an average PCE of 5.45% and a Champion PCE of 6.02%, higher than the average PCE of 4.29% for the device without Catechin doping. Furthermore, the stability of the doped device improved. It also exhibited dramatic performance when exposed to indoor lighting with the maximum PCE approaching 12.81% under 1000lx. This work further advances the field of lead-free PSCs and the potential of indoor photovoltaics.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要