Conditions Influencing The Appearance Of Thermal Windows And The Distribution Of Surface Temperature In Hauled-Out Southern Elephant Seals

CONSERVATION PHYSIOLOGY(2021)

引用 4|浏览7
暂无评分
摘要
Pinnipeds (true seals, sea lions and walruses) inhabit two thermally different environments, air and water, so need to make continuous adjustments to maintain a balanced body temperature. The thermal isolation properties of thick blubber keep warmth within the body's core, ideal for mammals while in the water; however, when on land, this thick blubber makes it difficult to lose heat. Some pinnipeds use thermal windows, discrete patches where temperature changes on their body surface, as a mechanism to dissipate excessive heat. We identify the factors that correlate with the appearance of thermal windows and changes in body surface temperature on southern elephant seals, Mirounga leonina, while they are hauled out ashore. Infrared thermography was used to measure surface temperature of the seals. Temperature was lower on the torso than the flippers and head, suggesting that not all body sites have the same role in thermal balance. Air temperature was the main driver of variation in the surface temperature of the seals' flippers and head; seals cool their superficial tissues when the air temperature is below similar to 2 degrees C. This minimizes heat loss by reducing the thermal gradient between their skin and the ambient air. Wind speed was the main predictor of whether thermal windows appear on a seals' body surface. When wind speed was minimal, thermal windows occurred more often, which may be associated with either hair and skin drying, or producing thermal conditions for hair and skin regrowth. The type of aggregation (huddled or alone) influenced the surface temperature of the fore flippers; however, we did not find statistical influence of the seal's sex, state of moult, or the substrate on which they were hauled out (kelp or sand). Understanding how animals maintain their thermal balance is important if we are to predict how they will respond to future climate change.
更多
查看译文
关键词
Heat dissipation, marine mammal, moult, pinniped, thermography, thermoregulation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要