谷歌浏览器插件
订阅小程序
在清言上使用

The Interaction Energy Between Solvent Molecules and Graphene As an Effective Descriptor for Graphene Dispersion in Solvents

Journal of physical chemistry C/Journal of physical chemistry C(2021)

引用 3|浏览8
暂无评分
摘要
Graphene has extensive application in various prospects due to its good stability, high conductivity, and large specific surface area. However, the dispersion of graphene in solvents can significantly affect the preparation of graphene-supported metal nanoparticles through wet chemistry methods. In this work, a density functional theory calculation is carried out to study the interaction between graphene and various solvent molecules. According to the calculation, there is a correlation between the interaction energy (E-a) and the dispersion concentration of graphene in different solvents. In addition, we use methanol, ethanol, or 2-propanol as solvents to prepare graphene-supported palladium nanoparticles. The size of the nanoparticles decreased with stronger interaction between graphene and solvent molecules when using methanol, ethanol, or 2-propanol as solvents. Furthermore, there is a good correlation with the size of the nanoparticles and interaction energies between graphene and solvent molecules, which confirmed that E-a is an effective descriptor for graphene dispersion in solvents. This work provides insightful information to understand the dispersion mechanism of graphene in solvents and preparation of graphene-supported metal nanoparticles through wet chemistry methods.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要