Chrome Extension
WeChat Mini Program
Use on ChatGLM

High-Pressure O2 Annealing Enhances the Crystallinity of Ultrawide-Band-Gap Sesquioxides Combined with Graphene for Vacuum-Ultraviolet Photovoltaic Detection

ACS applied materials & interfaces(2021)

Cited 4|Views3
No score
Abstract
(AlxGa1-x)2O3 is emerging as a promising wide-band-gap sesquioxide for vacuum-ultraviolet (VUV, 10-200 nm) photodetectors and high-power field-effect transistors. However, how the key parameters such as the band gap and crystalline phase of the (AlxGa1-x)2O3-based device vary with stoichiometry has not been explicitly defined, which is due to the unclear underlying mechanism of the Al local coordination environment. In this work, a high-pressure O2 (20 atm) annealing (HPOA) strategy that can significantly improve the crystallinity of β-(AlxGa1-x)2O3 and achieve a tunable optical band gap was proposed, facilitating the revelation of the local structure of Al3+ varying with Al content and the kinetic mechanism of Al3+ diffusion. By combining the as-HPOA-treated single-crystalline β-(Al0.69Ga0.31)2O3 films with p-type graphene (p-Gr), which serves as a transparent conductor, a VUV photovoltaic detector is fabricated, showing an improved photovoltage (0.80 V) and fast temporal response (2.1 μs). All of these findings provide a rewarding and important strategy for enhancing the band-gap tunability of sesquioxides, as well as the flexibility of zero-power-consumption photodetectors.
More
Translated text
Key words
sesquioxides,gallium oxide,vacuum-ultraviolet,photodetector,wide-band-gap semiconductor
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined