Selective serotonin reuptake inhibitor citalopram ameliorates cognitive decline and protects against amyloid beta-induced mitochondrial dynamics, biogenesis, autophagy, mitophagy and synaptic toxicities in a mouse model of Alzheimer's disease

HUMAN MOLECULAR GENETICS(2021)

引用 28|浏览0
暂无评分
摘要
In the current study, we investigated the protective role of citalopram against cognitive decline, impaired mitochondrial dynamics, defective mitochondrial biogenesis, defective autophagy, mitophagy and synaptic dysfunction in APP transgenic mouse model of Alzheimer's disease (AD). We treated 12-month-old wild-type (WT) and age-matched transgenic APP mice with citalopram for 2 months. Using Morris Water Maze and rotarod tests, quantitative RT-PCR, immunoblotting, biochemical methods and transmission electron microscopy methods, we assessed cognitive behavior, RNA and protein levels of mitochondrial dynamics, biogenesis, autophagy, mitophagy, synaptic, AD-related and neurogenesis genes in wild-type and APP mice treated and untreated with citalopram. Citalopram-treated APP mice relative to citalopram-untreated APP mice exhibited improved cognitive behavior. Increased levels of mRNA associated with mitochondrial fission and AD-related genes; decreased levels of fusion, biogenesis, autophagy, mitophagy, synaptic and neurogenesis genes were found in APP mice relative to WT mice. However, APP mice treated with citalopram compared to citalopram-untreated APP mice revealed reduced levels of the mitochondrial fission and AD-related genes and increased fusion, biogenesis, autophagy, mitophagy, synaptic and neurogenesis genes. Our protein data agree with the mRNA levels. Transmission electron microscopy revealed significantly increased mitochondrial numbers and reduced mitochondrial length in APP mice; these were reversed in citalopram-treated APP mice. Further, Golgi-cox staining analysis revealed reduced dendritic spines in APP mice relative to WT mice. However, citalopram-treated APP mice showed significantly increased dendritic spines, indicating that citalopram enhances spine density, synaptic activity and improved cognitive function in APP mice. These findings suggest that citalopram reduces cognitive decline, A beta levels and mitochondrial and synaptic toxicities and may have a strong protective role against mutant APP and A beta-induced injuries in patients with depression, anxiety and AD.
更多
查看译文
关键词
alzheimers,serotonin,synaptic toxicities,beta-induced
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要