Post-transcriptional dysregulation in autism, schizophrenia, and bipolar disorder.

Yuanyuan Wang, Yitong Yan, Bin Zhou,Mingyan Lin

Journal of biomedical research(2024)

引用 0|浏览9
暂无评分
摘要
The alteration of gene expression is not restricted to transcriptional regulation but includes a variety of post-transcriptional mechanisms, however, the role of the latter underlying many diseases remains relatively unknown. By utilizing an RNA-Seq dataset of 1510 brain samples from individuals with autism spectrum disorder (ASD), bipolar disorder (BD), schizophrenia (SCZ), and controls, we assessed the contribution of post-transcriptional dysregulation and identified top perturbators accountable for transcriptomic changes of expression in neuropsychiatric disorders. Around 30% of the variability in expression can be attributed to post-transcriptional dysregulation. Interestingly, RNA stability tended to decrease in SCZ and BD, leading to the inhibition of neurogenesis and neural differentiation, while the increase in ASD, resulted in enhanced activity of apoptosis. This finding implicated contrasting pathologies involving RNA stability among neuropsychiatric disorders. An RNA binding protein (RBP)-ELAVL3 - is predicted to be significantly involved in the disruption of RNA stability in all three disorders. To validate, we knocked down its expression in cerebral organoids. Not only differentially expressed genes in ELAVL3-knockdown covered a considerable proportion of predicted targets in three disorders, we also found neurogenesis was significantly affected, given the diminished proliferation and consequently the reduced size of the organoids. Our study extends the current understanding of the link between post-transcriptional regulation and neuropsychiatric disorders and provides new therapeutic targets for early intervention.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要