Carrier frequency and incidence estimation of Smith–Lemli–Opitz syndrome in East Asian populations by Genome Aggregation Database (gnomAD) based analysis

ORPHANET JOURNAL OF RARE DISEASES(2021)

引用 3|浏览2
暂无评分
摘要
Background Smith–Lemli–Opitz syndrome (SLOS) is an autosomal, recessively inherited congenital malformation syndrome characterized by multiple congenital anomalies such as microcephaly with mental defects, distinctive facial features, genital abnormalities, and 2–3 syndactyly of the toes. SLOS is caused by defective 7-dehydrocholesterol reductase, which is encoded by the DHCR7 gene. This study aimed to analyze the carrier frequency and expected incidence of SLOS in East Asians and Koreans using exome data from the Genome Aggregation Database (gnomAD) through the 2015 American College of Medical Genetics and Genomics and the Association for Molecular Pathology guideline (2015 ACMG-AMP guideline). Methods We analyzed 9197 exomes for East Asian populations from gnomAD, comprising 1909 Korean, 76 Japanese, and 7212 other East Asian populations. All identified variants were classified according to the 2015 ACMG-AMP guideline. Results According to the 2015 ACMG-AMP guideline, 15 pathogenic variant/likely pathogenic variant (PV/LPV) cases were identified in 33 East Asian individuals (33/9191 = 0.4%). Among them, four PVs/LPVs were identified in 19 Korean individuals (19/1909 = 1.0%). The predicted incidence, based upon the carrier rates of PV/LPV of DHCR7 alleles, is 1 in 310,688 in East Asians and l in 40,380 in Koreans. Conclusions This study is the first to identify carrier frequencies in East Asians and Koreans using gnomAD. It was confirmed that East Asians (0.4%) had a lower carrier frequency than did other ethnicities (1–3%) and Koreans (1.0%) had similar or lower carrier frequencies than other ethnicities. The variant spectrums of DHCR7 in East Asian and Korean populations differed greatly from those of other ethnic groups.
更多
查看译文
关键词
Smith–Lemli–Opitz syndrome,DHCR7,gnomAD,Carrier frequency,East asian
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要