Influence Of The Rear Interface On Composition And Photoluminescence Yield Of Cztsse Absorbers: A Case For An Al2o3 Intermediate Layer

ACS APPLIED MATERIALS & INTERFACES(2021)

引用 8|浏览11
暂无评分
摘要
The rear interface of kesterite absorbers with Mo back contact represents one of the possible sources of nonradiative voltage losses (Delta V-oc,V-nrad) because of the reported decomposition reactions, an uncontrolled growth of MoSe2, or a nonoptimal electrical contact with high recombination. Several intermediate layers (IL), such as MoO3, TiN, and ZnO, have been tested to mitigate these issues, and efficiency improvements have been reported. However, the introduction of IL also triggers other effects such as changes in alkali diffusion, altered morphology, and modifications in the absorber composition, all factors that can also influence Delta V-oc,V-nrad. In this study, the different effects are decoupled by designing a special sample that directly compares four rear structures (SLG, SLG/Mo, SLG/Al2O3, and SLG/Mo/Al2O3) with a Na-doped kesterite absorber optimized for a device efficiency >10%. The IL of choice is Al2O3 because of its reported beneficial effect to reduce the surface recombination velocity at the rear interface of solar cell absorbers. Identical annealing conditions and alkali distribution in the kesterite absorber are preserved, as measured by time-of-flight secondary ion mass spectrometry and energy-dispersive X-ray spectroscopy. The lowest Delta V-oc,V-nrad of 290 mV is measured for kesterite grown on Mo, whereas the kesterite absorber on Al2O3 exhibits higher nonradiative losses up to 350 mV. The anticipated field-effect passivation from Al2O3 at the rear interface could not be observed for the kesterite absorbers prepared by the two-step process, further confirmed by an additional experiment with air annealing. Our results suggest that Mo with an in situ formed MoSe2 remains a suitable back contact for high-efficiency kesterite devices.
更多
查看译文
关键词
kesterite, CZTSSe, solar cell, back contact, photoluminescence, Al2O3, nonradiative recombination
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要