Plasmacytoid Dendritic Cells Have Divergent Effects On Hiv Infection Of Initial Target Cells And Induce A Pro-Retention Phenotype

PLOS PATHOGENS(2021)

引用 5|浏览19
暂无评分
摘要
Author summaryIFNs constitute one of the first and most important innate immune control to restrict initial viral replication and spread. As HIV has evolved mechanisms to block IFN-I induction in its target cells, but not in infiltrating pDCs, understanding how pDCs influence HIV infection of HIV target cells upon initial transmission is critical to prevent or control initial infection. Therefore, we modelled the early events occurring immediately as HIV enters the human genital mucosa. We showed that IFN alpha secreting pDC compensated for HIV inhibition of IFN-I production in its target cells in two different ways: i) reduced infection in DCs and macrophages which would limit viral spread to resident or newly infiltrating memory CD4 T cells; ii) reactivation of latent HIV in all subsets of resting memory CD4 T cell subsets, accompanied by limited viral spread, upregulation of MHC-I and induction of a tissue retention phenotype. The increased HIV protein, MHC-I expression and retention may enhance exposure to CD8 T cell surveillance. This model suggests that IFN alpha reactivation of latent HIV combined with adoptive immunotherapy using CD8 T cells or those expressing chimeric antigen receptors (CAR) could provide a novel 'kick and kill' approach to eradicate HIV reservoirs.Although HIV infection inhibits interferon responses in its target cells in vitro, interferon signatures can be detected in vivo soon after sexual transmission, mainly attributed to plasmacytoid dendritic cells (pDCs). In this study, we examined the physiological contributions of pDCs to early HIV acquisition using coculture models of pDCs with myeloid DCs, macrophages and the resting central, transitional and effector memory CD4 T cell subsets. pDCs impacted infection in a cell-specific manner. In myeloid cells, HIV infection was decreased via antiviral effects, cell maturation and downregulation of CCR5 expression. In contrast, in resting memory CD4 T cells, pDCs induced a subset-specific increase in intracellular HIV p24 protein expression without any activation or increase in CCR5 expression, as measured by flow cytometry. This increase was due to reactivation rather than enhanced viral spread, as blocking HIV entry via CCR5 did not alter the increased intracellular p24 expression. Furthermore, the load and proportion of cells expressing HIV DNA were restricted in the presence of pDCs while reverse transcriptase and p24 ELISA assays showed no increase in particle associated reverse transcriptase or extracellular p24 production. In addition, PDCs also markedly induced the expression of CD69 on infected CD4 T cells and other markers of CD4 T cell tissue retention. These phenotypic changes showed marked parallels with resident memory CD4 T cells isolated from anogenital tissue using enzymatic digestion. Production of IFN alpha by pDCs was the main driving factor for all these results. Thus, pDCs may reduce HIV spread during initial mucosal acquisition by inhibiting replication in myeloid cells while reactivating latent virus in resting memory CD4 T cells and retaining them for immune clearance.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要