谷歌浏览器插件
订阅小程序
在清言上使用

Silymarin ameliorates the disordered glucose metabolism of mice with diet-induced obesity by activating the hepatic SIRT1 pathway

Cellular signalling(2021)

引用 9|浏览13
暂无评分
摘要
Obesity-induced insulin resistance is the principal cause of type 2 diabetes worldwide. The use of natural products for the treatment of diabetes is increasingly attracting attention. Silymarin (SLM) is a flavonolignan compound that has been shown to have promise for the treatment of diabetes. In the present study, we aimed to investigate the mechanisms underlying its therapeutic effects. C57BL/6 mice were fed a high-fat diet (HFD) for 12 weeks and then orally administered SLM (30 mg/kg) daily for 1 month. The effects of SLM were also investigated in HepG2 cells that had been rendered insulin resistant by palmitic acid (PA) treatment. SLM ameliorated the dyslipidemia, hepatic steatosis, and insulin resistance of the HFD-fed mice. HFD-feeding and PA treatment reduced the expression of sirtuin-1 (SIRT1) in the livers of the mice and in HepG2 cells, respectively. SLM increased the phosphorylation of AKT and FOXO1, and reduced the level of FOXO1 acetylation in PAtreated cells. However, SIRT1 knockdown by RNA interference reduced these effects of SLM. Moreover, the results of molecular dynamic simulation and in vitro activity assays indicated that SLM may directly bind to SIRT1 and increase its enzymatic activity. These findings suggest that hepatic SIRT1 may be an important pharmacological target of SLM and mediate effects on insulin resistance and gluconeogenesis, which may underlie its anti-diabetic activity.
更多
查看译文
关键词
Silymarin,SIRT1,FOXO1,Hepatic gluconeogenesis,Type 2 diabetes
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要