Modeling The Optical Cherenkov Signals By Cosmic Ray Extensive Air Showers Directly Observed From Suborbital And Orbital Altitudes

PHYSICAL REVIEW D(2021)

引用 14|浏览0
暂无评分
摘要
Future experiments based on the observation of Earth's atmosphere from sub-orbital and orbital altitudes plan to include optical Cherenkov cameras to observe extensive air showers produced by high-energy cosmic radiation via its interaction with both the Earth and its atmosphere. As discussed elsewhere [Phys. Rev. D 103, 043017 (2021); Phys. Rev. D 100, 063010 (2019)), particularly relevant is the case of upwardmoving showers initiated by astrophysical neutrinos skimming and interacting in the Earth. The Cherenkov cameras, by looking above Earth's limb, can also detect cosmic rays with energies starting from less than a PeV up to the highest energies (tens of EeV). Using a customized computation scheme to determine the expected optical Cherenkov signal from these high-energy cosmic rays, we estimate the sensitivity and event rate for balloon-borne and satellite-based instruments, focusing our analysis on the Extreme Universe Space Observatory aboard a Super Pressure Balloon 2 (EUSO-SPB2) and the Probe of Extreme Multi-Messenger Astrophysics (POEMMA) experiments. We find the expected event rates to be larger than hundreds of events per hour of experimental live time, enabling a promising overall test of the Cherenkov detection technique from sub-orbital and orbital altitudes as well as a guaranteed signal that can be used for understanding the response of the instruments.
更多
查看译文
关键词
optical cherenkov signals,sub-orbital
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要