Effects Of A Lagoon On Performances Of A Freshwater Fishpond In A Multi-Trophic Aquaculture System

AQUATIC LIVING RESOURCES(2021)

引用 4|浏览0
暂无评分
摘要
Integrated multi-trophic aquaculture (IMTA) is a way to help preserve the environment while maintaining a good level of total production. An ecologically semi-intensive pond system was designed in which a polyculture fishpond was associated with a lagoon planted with macrophytes to bioremediate the water. The properties of this "semi-intensive coupled" system (SIC) were compared to those of semi-intensive (SI) and extensive (E) systems, each of which was contained in a single fishpond with the same fish polyculture (common carp (Cyprinus carpio), roach (Rutilus rutilus), and perch (Perca fluviatilis)) as SIC. E differed in that it had half the initial density of fish, and the fish were not fed. Fish growth performances, water quality (chemical and biological indicators), chlorophyll concentrations, and invertebrate production were measured. The systems were compared based on fish production performances and physicochemical and biological characteristics, and were then described using principal component analysis (PCA). Carp and roach in the two fed systems had higher growth performances than those in E. Compared to SI, the planted lagoon in SIC, induced a decrease of 15% in fish growth performances and of 83% in total chlorophyll concentration (a proxy for phytoplankton) but improved water quality (-34%, -60% and -80%, for the concentrations of total nitrogen, total phosphorus, and blue green algae (for micro-algae in class Cyanophyceae), respectively). According to the PCA, SIC clearly differed from SI in benthic macro-invertebrate production and concentrations of total nitrogen, total phosphorus, and brown algae (for micro-algae in class Dinophyceae or a branch of Bacillariophyta) in the water. SIC differed from E in oxygen parameters (dissolved and saturation), estimated annual zooplankton production, and pH. In conclusion, the properties of a lagoon reveal perspectives for environmentally friendly practices, while using biodiversity and secondary production in order to enhance fish production.
更多
查看译文
关键词
IMTA, common carp, Phytoplankton, Zooplankton, Nitrogen, phosphorus
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要